三种较为成熟的制氢技术路线


发布时间:

2023-01-16

较为成熟的技术路线有3种,即使用煤炭、天然气等化石能源重整制氢,以醇类裂解制氢技术为代表的化工原料高温分解重整制氢,以及电解水制氢。

1.化石能源重整制氢

 

天然气制氢技术中,蒸汽重整制氢较为成熟, 是国外主流制氢方式。其原理是:先对天然气进行预处理,甲烷和水蒸汽在转化炉中反应生成一氧化碳和氢气等;经余热回收后,在变换塔中,一氧化碳和水蒸气反应生成二氧化碳和氢气。该技术是在天然气蒸汽转化技术的基础上实现的。在变换塔中,在催化剂存在的条件下,控制反应温度, 转化气中的一氧化碳和水反应,生成氢气和二氧化碳。主要反应式为

 

 

目前,国内天然气重整制氢、高温裂解制氢主要应用于大型制氢工业。天然气制氢过程的原料气也是燃料气,无需运输,但天然气制氢投资比较高,适合大规模工业化生产。一般制氢规模在5000m3/h以上时选择天然气制氢工艺更经济。此外,天然气原料占制氢成本的70%以上,天然气价格是决定氢价格的重要因素,而我国富煤、缺油、少气的能源特点,制约着天然气制氢在我国的实施。

 

煤气化制氢是工业大规模制氢的首选,也是我国主流的化石能源制氢方法。该制氢工艺通过气化技术将煤炭转化为合成气(CO、CH4、H2、CO2、N2 等),再经水煤气变换分离处理以提取高纯度的氢气,是制备合成氨、甲醇、液体燃料、天然气等多种产品的原料,广泛应用于石化、钢铁等领域。煤制氢技术路线成熟高效,可大规模稳定制备,是当前成本最低的制氢方式。

 

2.甲醇水蒸气重整制氢

 

甲醇水蒸气重整制氢,即甲醇和水在一定温度、压力和催化剂作用下转化生成氢气、二氧化碳以及少量一氧化碳和甲烷的混合气体,该方法产物中氢气体积分数是甲醇制氢法中最高的。甲醇水蒸气重整制氢具有反应温度低、产物氢气体积分数高、一氧化碳体积分数(<2%)较甲醇分解制氢法低等优点。因此,目前开发的甲醇制氢技术主要采用甲醇水蒸气重整制氢工艺,其反应机理见式(3),工艺流程如图所示。甲醇水蒸汽重整制氢装置已经广泛用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等行业。

 

 

3.电解水制氢

 

化石能源重整制氢、甲醇水蒸气重整制氢过程均有含碳化合物的排出,不符合可持续发展和绿色发展的环保理念,而电解水制氢过程为水电解生成氢气和氧气,无含碳化合物的排出,绿色环保。目前,我国正处于能源转型的关键阶段,将可再生能源(太阳能、风能等)转化为氢气或者含氢燃料的能源载体,有助于推进我国能源转型进程,促进我国能源多元化发展。

可再生能源电解水制氢技术路线如图所示。

                                                                   

图中,根据电解质种类,电解槽可分为碱性电解槽、质子交换膜(proton exchange membrane,PEM)电解槽、固体氧化电解槽(solid oxide electrolyzecells,SOEC)3种。不同电解水制氢技术参数及特点对比见表。

                                                                                    

 

 

由表可以看出:碱性电解水制氢技术是目前市场化最成熟、制氢成本最低的技术;质子交换膜电解水制氢技术较为成熟,具有宽范围的运行电流密度,可以更好地适应可再生能源的波动性,是国外发展的重要方向,我国应加大质子交换膜电解水制氢技术的研发力度,加强与国外领先单位的合作研发;固体氧化物电解水制氢技术是能耗最低、能量转换效率最高的电解水制氢技术,国外学者在Science上发表的文章指出,固体氧化物电解槽可在动态电力输出下工作,并不会有明显衰减。因此,固体氧化物电解水制氢技术有望实现大规模、低成本的氢气供应,应重点关注并提前进行技术和专利布局。

PEM电解槽为例,其工作原理如下所示。

 

 

PEM电解槽由膜电极组件(MEA)、气体扩散层(GDL)及带有流道的隔板(双极板)组成。电解槽中,水经过电解在阳极产生氧气,在阴极产生氢气,因此在产生的气体出口设置了流量计。典型的碱性电解槽考虑温度影响的U-I特性曲线模型及电解槽制氢量相关模型可以用式(4)表示。

式中:Uc为电压常数;T是温度,单位K;R1、R2是电解液的欧姆电阻参数,Ωm2;s是与稳定相关的过电压系数,V;t也是与稳定相关的过电压系数,K/A;nac(H2)指实际制氢量;ηF为法拉第效率;Nc为系统中电解槽的个数;F为法拉第常数。PEM电解槽的电流由可再生能源发电的输出功率及电解槽相关特性参数决定。

 

通过利用可再生能源发电的弃水、弃光、弃风电力,电解水制氢可平抑风力、光伏等发电输出的波动性,并减少能源浪费,解决弃电问题。另一方面,可以通过远距离输运氢燃料,将可再生能源从资源丰富的地区高效转移到用能负荷中心,利用氢气发电增强电网的协调性和可靠性,有效解决可再生能源供需存在的区域错配问题。上述整个过程清洁环保,几乎不产生二氧化碳。但是,可再生能源电解制氢成本较高,因此,“绿氢”的制取亟需可再生能源电解水制氢技术的进一步攻关,降低制氢成本,助力碳达峰、碳中和任务的推进。

 

综合对比以上3种制氢技术:煤、天然气制氢技术最为成熟,尤其煤制氢在我国具有较大成本优势,但此法制得的“灰氢”不符合能源向低碳转型的绿色发展需求;电解水制氢技术可以制得“绿氢”,能源效率高,但是成本较高,经济性较差。3种制氢工艺的技术水平及经济性对比见下表。

 

煤或天然气制得的“灰氢”通过CCUS技术可转化为“蓝氢”,该技术也是我国实现碳中和目标技术组合的重要一环。随着碳达峰、碳中和工作的深入进行,制氢领域面临的挑战将是实现无碳或碳中性(“绿氢”或“蓝氢”)的技术(目前通过电解水制取“绿氢”来替代),并将这些技术以更大规模推广应用,进而降低生产成本,产生经济效益。